Search results for "Computer aided detection"
showing 9 items of 9 documents
Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review
2015
Prostate cancer is the second most diagnosed cancer of men all over the world. In the last few decades, new imaging techniques based on Magnetic Resonance Imaging (MRI) have been developed to improve diagnosis. In practise, diagnosis can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. In this regard, computer-aided detection and computer-aided diagnosis systems have been designed to help radiologists in their clinical practice. Research on computer-aided systems specifically focused for prostate cancer is a young technology and has been part of a dynamic field of research for the last 10years. This survey aims to provide a comprehen…
A Fuzzy Logic C-Means Clustering Algorithm to Enhance Microcalcifications Clusters in Digital Mammograms
2011
The detection of microcalcifications is a hard task, since they are quite small and often poorly contrasted against the background of images. The Computer Aided Detection (CAD) systems could be very useful for breast cancer control. In this paper, we report a method to enhance microcalcifications cluster in digital mammograms. A Fuzzy Logic clustering algorithm with a set of features is used for clustering microcalcifications. The method described was tested on simulated clusters of microcalcifications, so that the location of the cluster within the breast and the exact number of microcalcifications is known.
Preprocessing methods for nodule detection in lung CT
2005
Abstract The use of automatic systems in the analysis of medical images has proven to be very useful to radiologists, especially in the framework of screening programs, in which radiologists make their first diagnosis on the basis of images only, most of those corresponding to healthy patients, and have to distinguish pathological findings from non-pathological ones at an early stage. In particular, we are developing preprocessing methods to be applied for pulmonary nodule Computer Aided Detection in low-dose lung Multi Slice CT (computed tomography) images.
Computer-Assisted Classification Patterns in Autoimmune Diagnostics: The AIDA Project.
2016
International audience; Antinuclear antibodies (ANAs) are significant biomarkers in the diagnosis of autoimmune diseases in humans, done by mean of Indirect ImmunoFluorescence (IIF) method, and performed by analyzing patterns and fluorescence intensity. This paper introduces the AIDA Project (autoimmunity: diagnosis assisted by computer) developed in the framework of an Italy-Tunisia cross-border cooperation and its preliminary results. A database of interpreted IIF images is being collected through the exchange of images and double reporting and a Gold Standard database, containing around 1000 double reported images, has been settled. The Gold Standard database is used for optimization of …
Superior Performances of the Neural Network on the Masses Lesions Classification through Morphological Lesion Differences
2007
Purpose of this work is to develop an automatic classification system that could be useful for radiologists in the breast cancer investigation. The software has been designed in the framework of the MAGIC-5 collaboration. In an automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based generally on morphological lesion differences. A study in the space features representation is made and some classifiers are tested to distinguish the pathological regions from the healthy ones. The results provided in terms of sensitivity and specificity will be p…
Dissimilarity Application in Digitized Mammographic Images Classification.
2006
Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the traditional way of learning from examples of objects the classifiers are built in a feature space. However, an alternative ways can be found by constructing decision rules on dissimilarity (distance) representations. In such a recognition process a new object is described by its distances to (a subset of) the training samples. The use of the dissimilarities is especially of interest when features are difficult to obtain or when they have a little discrim…
GPCALMA, a mammographic CAD in a GRID connection
2003
Purpose of this work is the development of an automatic system which could be useful for radiologists in the investigation of breast cancer. A breast neoplasia is often marked by the presence of microcalcifications and massive lesions in the mammogram: hence the need for tools able to recognize such lesions at an early stage. GPCALMA (Grid Platform Computer Assisted Library for MAmmography), a collaboration among italian physicists and radiologists, has built a large distributed database of digitized mammographic images (at this moment about 5500 images corresponding to 1650 patients). This collaboration has developed a CAD (Computer Aided Detection) system which, installed in an integrated…
Computer-Aided Diagnosis System with Backpropagation Artificial Neural Network—Improving Human Readers Performance
2016
This article presents the results of a study into possibility of artificial neural networks (ANNs) to classify cancer changes in mammographic images. Today’s Computer-Aided Detection (CAD) systems cannot detect 100 % of pathological changes. One of the properties of an ANN is generalized information —it can identify not only learned data but also data that is similar to training set. The combination of CAD and ANN could give better result and help radiologists to take the right decision.
Fuzzy technique for microcalcifications clustering in digital mammograms
2012
Abstract Background Mammography has established itself as the most efficient technique for the identification of the pathological breast lesions. Among the various types of lesions, microcalcifications are the most difficult to identify since they are quite small (0.1-1.0 mm) and often poorly contrasted against an images background. Within this context, the Computer Aided Detection (CAD) systems could turn out to be very useful in breast cancer control. Methods In this paper we present a potentially powerful microcalcifications cluster enhancement method applicable to digital mammograms. The segmentation phase employs a form filter, obtained from LoG filter, to overcome the dependence from …